

Spatial Analytic Modeling of the Health Effects of Traffic Emissions

- Eric Roberts, MD PhD
- Paul English, PhD MPH
- Craig Wolf, MS-Eng
- Makinde Falade, MS-GIS
- Svetlana Smorodinsky, MPH

What are the health-hazard associations in my data?

- Health outcome: ER visits due to asthma among Alameda County, California residents enrolled in Medicaid and Kaiser Permanente; geocoded by residence address
- Hazard metric: Annualized average vehicle counts within a 300-meter radius of subject's residence

The approach I learned in grad school:

$$f(ER) = b_0 + b_{\exp} x_{\exp} + b_{\cos} x_{\cos} + \sum e_i$$

- f(ER) is a function of the ER visit rate, such as the log or logit
- x_{exp} is my exposure metric(s)
- *x_{cov}* are my important covariates such as race or social class; these may not be of direct interest but their inclusion can profoundly influence the other parameters I calculate

The approach I learned in grad school:

$$f(ER) = b_0 + b_{\exp} x_{\exp} + b_{\cos} x_{\cos} + \sum e_i$$

- β_{exp} are the parameters that I'm really interested in they represent the associations between traffic and ER visits
- ε_i are my residuals in order for my parameter estimates to be valid, these must be evenly distributed around zero and their mean must be constant throughout Alameda County

Traditional approach

- Advantages:
 - 1. Understood by all professional audiences
 - 2. Common understanding about how regression results behave under different circumstances
 - 3. Many accessible software packages to choose from

Traditional approach

- Biggest disadvantage:
 - My assumption about the constant mean of the residuals (i.e. that all spatial structure is accounted for by x_{exp} and x_{cov}) is extremely tenuous)

One solution

$$f(ER) = b_0 + b_{exp} x_{exp} + b_{cov} x_{cov} + Sp(x, y)$$

- Allows for the spatial structure of your residuals in your regression model
- Any residual geographic variation not accounted for by your parameters is represented in the residual structure ("residual variation")

What can we use for Sp(x,y)?

- Several options, although more have been developed for aggregated (regional) rather than point data
- Could be a description of how the covariance between neighboring points decreases with distance (Kriging)
- Another option is locally weighted estimation (loess) – the regression (usually linear or quadratic) of the outcome f(ER) as a function of the coordinates across the space

Implications of including non-parametric terms

 lo(x,y) will take on a different form depending on what you leave out of your model; in

$$f(ER) = \beta_0 + lo(x, y)$$

lo(x,y) just depicts the spatial variation of f(ER)

• If lo(x,y) adapts to fit whatever is left out of the model, will β_{exp} change depending on whether we include our covariates anymore?

$$f(ER) = \beta_0 + \beta_{\text{exp}} x_{\text{exp}} + \beta_{\text{cov}} x_{\text{cov}} + lo(x, y)$$
$$f(ER) = \beta_0 + \beta_{\text{exp}} x_{\text{exp}} + lo(x, y)$$

Enough talk already, let's give it a shot!

Estimating lo(x,y)

- At any given point, the nearest neighbors are included in the locally weighted estimation
- The fraction of all the data included as nearest neighbors is the span, which must be specified
- A small span gives a "bumpy" loess function, whereas a larger one will be smoother
- Still working out the bugs...

Relative risk for ER visits, children 0-4 span=0.04

Relative risk for ER visits, children 0-4 span=0.15

Relative risk for ER visits, children 0-4 span=0.30

Relative risk for ER visits, children 0-4 span=0.60

How much smoothing is the "right amount?"

 This is really a question of how well the curve can predict the value of any given point

- Predictive power is maximized when Akaike's Information Criterion (AIC) is minimized
- Is this the best approach for all environmental epidemiology questions? All community stakeholder communications?

Finding the minimum AIC can be a chore!

- Large samples and/or large span values require heavy computing resources
- A random subset of the total sample may have a different span value associated with the AIC minimum

Optimal span sizes for asthma ER visit data

Age group	Available sample	Sample used	Span with AIC _{min}
0-4 years	44,526	(all)	0.078
5-17 years	78,433	25,000	1.000
18-44 years	197,856	25,000	0.077
45-64 years	111,235	25,000	0.141
65+ years	64,820	25,000	1.000

Does this change anything?

 Compared RR for ER visits among quartiles of exposure to our traffic metric (reference=1st quartile)

Models:

- Traffic only
- Traffic + median family income of census tract + Medicaid status
- Traffic with loess smooth term
- Traffic + median family income of census tract +
 Medicaid status with loess smooth term

Results

- When smooth term included, the presence or absence of covariates in the model becomes mostly irrelevant (for these data!)
- Inclusion of the smooth term may make the pollution parameters...
 - More like the crude model
 - More like the adjusted model
 - Similar to neither model

ER visits: Ages 0-4

ER visits: Ages 5-17

ER visits: Ages 18-44

ER visits: Ages 45-64

ER visits: Ages 65+

Lessons learned

- Working with spatially structured residuals is not too difficult
- Big step is selection of span value need to explore appropriateness of AIC_{min} criterion for Tracking purposes
- We need much more experience to understand:
 - The relationship between sample size and the span value for AIC_{min}
 - How and when to graphically represent represent smoothed residuals
 - Under what circumstances it's ok to leave covariates out of our regression models

Lessons learned

- Often in Tracking we lack satisfactory covariate measures – if these can become irrelevant, this could be a big advantage
- Ability to visualize the residuals as maps may be a great tool on its own
 - Potentially objective criterion to determine appropriate resolution for maps
 - Ability to control for covariates to alter and view the resulting residual structure

Thank you!

The CDC Environmental Public Health
Tracking Program

Lance A. Waller, PhD*

*For invaluable comments and advice; any errors and misconceptions are my fault, not his!